Development of an XRF Borehole Probe for Depths up to 500 m

Jan Bachmann
Claus Bachmann
Markus Reich
Ulrich Harms
Helge Wurst
Why Borehole Probe Development?

- Exploration is done by borehole drilling
 - Core Drilling
 - Cores can be analyzed with hand held XRF devices
 - Later analysis in laboratory
 - Time consuming
 - Very expensive
 - Very precise
Why Borehole Probe Development?

- Exploration is done by borehole drilling
 - Conventional Drilling
 - Drill debris is collected as sample
 - Evaluation of subsamples is done in laboratory
 - Analysis in laboratory is time consuming and costly
 - Samples represent average of certain part of the drilled hole (e.g. 20 m)
 - Poor depth resolution
- Conventional methods do not allow fast action according to results
X-Ray Fluorescence

• Suitable for Elemental Analysis

• Present Status:
 - XRF measuring devices in operation under various conditions
 • On-belt measurement
 • Slurry measurement
 • Hand held devices for sample investigation
 - Logical step: Use of XRF for Borehole Logging
X-Ray Fluorescence

• Basic Measurement Principle
XRF Probe: Feasibility

• Prototype Development:
 – Borehole Probe
 • Depth up to 30 m
 • Not pressure proof
 • Width 90 mm
 • Cable based real-time data transmission to surface
 • Designed for blasthole logging
XRF Probe: Feasibility

• Prototype Development:
 – Based on standard XRF Analyzer
 – Big drum
 – Electronics included inside drum
 – Purpose:
 feasibility testing
XRF Probe: Feasibility

• Prototype Development:
 – Sensor length 600 mm
 – Standard X ray tube
 – Standard X ray sensor
 – No center alignment
 – No adaption to changing borehole diameters
XRF Probe: Feasibility

- Prototype Development:
 - Control of measurement is done with a laptop using WLAN
XRF Probe: Development

- Development of Industrial Version:
 - Borehole Probe
 - Joint development with GFZ, Potsdam, Germany
XRF Probe: Development

- Development of Industrial Version:
 - Borehole Probe
 - Depth up to 500 m
 - Widthstands pressure up to 5 MPa
 - Width 53 mm
 - Length approx. 2.000 mm
 - Cable based real-time data transmission to surface
XRF Probe: Development

- Borehole log
 - Logging speed variable
 - Accuracy increases with decreasing speed
 - Raw Sensor Data acquisition
- Simultaneous logging of different elements
- Density log
Borehole Probe

Challenges of high depth

<table>
<thead>
<tr>
<th></th>
<th>Prototype</th>
<th>Final Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>30 m</td>
<td>500 m</td>
</tr>
<tr>
<td>Temperature</td>
<td>Up to 40 °C</td>
<td>Up to 70 °C</td>
</tr>
<tr>
<td>Borehole Width</td>
<td>90 mm</td>
<td>53 mm</td>
</tr>
<tr>
<td>X-Ray Power Supply</td>
<td>Ground Level</td>
<td>Inside of Probe</td>
</tr>
<tr>
<td>Data Transmission</td>
<td>Ethernet</td>
<td>DSL</td>
</tr>
<tr>
<td>Data Transmission Range</td>
<td>30 m</td>
<td>500 m</td>
</tr>
<tr>
<td>Scan Speed</td>
<td>10-200 mm/s</td>
<td>10-200 mm/s</td>
</tr>
</tbody>
</table>
XRF Probe: Width

- All components must fit into the probe
 - Restriction
 - Available space: 43 mm inner diameter
 - Requirements
 - Development of a special power supply for voltages up to 50 kV
 - Development of an adapted X-ray sensor
 - Use of a miniaturized X-ray tube
 - Development of a high speed data transfer using standard winch cables
XRF Probe: Depth

• Increasing outside temperature with depth
 – Restriction:
 • All components must withstand increased temperature range
 – Requirements:
 • Excess heat has to be absorbed or exchanged to the environment
 – Heat pipes
 – Peltier cooling for sensor and electronics
 – Intelligent energy management
XRF Probe: Electronics

- All electronic components had to be adapted
 - Sensor
 - Adaption of an industrial available sensor
 - Sensor module with new supply board
XRF Probe: Electronics

• All electronic components had to be adapted
 - X-ray power supply
 • Commercially available power supplies (50 kV, 50 W) do not fit into tube
 • Complete new development required
XRF Probe: Electronics

- All electronic components had to be adapted
 - Data transmission
 - Adaption of existing ADSL techniques
 - Commercially available modules do not fit into tube
XRF Probe: Physics

- Probe must be tight, heat resistant and transparent for low energy X-rays
 - Requirements:
 - Thin window
 - Low Z window material
 - Pressure resistant
 - Temperature resistant
 - Solution:
 - High sensor sensitivity (10 Mio cps)
 - High X-ray intensity
Borehole Probe

- Power Supply
- Sensor
- Sensor Electronics
- Communication
- Probe Alignment
Borehole Probe

- Sensor Design
Borehole Probe

- Power Supply
- Sensor
- Sensor Electronics
- Communication
- Probe Alignment
Borehole Probe

- Power Supply
- Sensor
- Sensor Electronics
- Communication
- Probe Alignment
XRF Borehole Probe

This development is funded by the Federal Ministry of Economy of the Federal Republic of Germany.

ZIM

impulse für wachstum
Zentrales Innovationsprogramm Mittelstand

Bachmann
Thank you for your attention!